Research and Modeling of Lithium-Ion Batteries
VERSION OF RECORD ONLINE: 18/09/2025
Corressponding author's email:
duongva@hcmute.edu.vnDOI:
https://doi.org/10.54644/jte.2025.1849Keywords:
Lithium - ion, Batteries, Electrochemical model, TDMA, ModelingAbstract
With the growing demand for Lithium-ion (Li-ion) batteries in personal electronic devices and energy storage systems, modeling their operational behavior has become essential for optimizing design and improving control strategies. Among various cathode materials, Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO₂ – NMC) is particularly noteworthy due to its high energy density, long cycle life, and adaptability under diverse operating conditions. This study develops a simulation model for the charge/discharge processes of Li-ion batteries employing NMC cathodes, using a system of partial differential equations (PDEs) to describe electrochemical kinetics, mass conservation, and charge conservation. The finite element method is implemented in MATLAB to solve the PDEs and analyze the spatial distribution of electric potential, current density, and ion concentration. Simulations are conducted at charge/discharge rates of 1C, 2C, and 10C. These C-rates represent typical real-world usage conditions: 1C corresponds to standard operation aimed at maximizing battery lifespan, 2C represents moderate load scenarios, and 10C simulates high-load conditions suitable for high-power applications such as electric vehicles. The simulation results provide a theoretical foundation for optimizing battery design and control, as well as a valuable reference for students and research scholars.
Downloads: 0
References
Y. Li, Z. Tan, and W. Zhang, Electrochemical and Thermal Modeling of Li-ion Batteries. Boca Raton, FL, USA: CRC Press, 2021. doi: 10.1201/9781003090839.
D. Parikh, J. Allen, and R. Kee, “Elucidation of separator effect on energy density of Li-ion batteries,” J. Electrochem. Soc., vol. 166, no. 10, pp. A2129–A2138, 2019, doi: 10.1149/2.0231910jes.
S. Klick, M. Schulze, and H. Müller, “The influence of electrolyte volume on calendaric aging of lithium-ion batteries,” J. Energy Storage, vol. 32, p. 101801, Dec. 2020, doi: 10.1016/j.est.2020.101801.
R. Ranom, A. Zaki, and S. N. S. Ibrahim, “The effect of electrolyte parameter variation upon the performance of lithium iron phosphate (LiFePO4),” Indonesian J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1329–1337, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1329-1337.
C. Zou, C. Manzie, and D. Nešić, “Simplification techniques for PDE-based Li-ion battery models,” Automatica, vol. 129, p. 109599, Jul. 2021, doi: 10.1016/j.automatica.2021.109599.
A. Li, W. Wang, and C. Wang, “A review on lithium-ion battery separators towards enhanced safety performances and modelling approaches,” J. Electrochem. Soc., vol. 166, no. 10, pp. A1798–A1819, 2019, doi: 10.1149/2.0371910jes.
D. Miranda, C. M. Costa, and S. Lanceros-Méndez, “Modeling separator membranes physical characteristics for optimized lithium ion battery performance,” J. Power Sources, vol. 448, p. 227418, Feb. 2020, doi: 10.1016/j.jpowsour.2019.227418.
D. N. T. Kien, N. V. Dung, “Nghiên cứu, mô hình hóa và mô phỏng Pin Lithium-Ion sử dụng cho ô tô điện bằng phần mềm Matlab/Simulink,” Đồ án tốt nghiệp, Trường Đại học Sư phạm Kỹ thuật TP. Hồ Chí Minh, 2025.
T. B. Chau and N. V. Hai, “Nghiên cứu mô hình nhiệt-đi động học của pin lithium-ion 18650 bằng phương pháp số,” Tạp chí Khoa học và Công nghệ Hàng hải, no. 74, pp. 36–40, 2024.
J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, Nov. 2001.
M. Armand and J. M. Tarascon, “Building better batteries,” Nature, vol. 451, no. 7179, pp. 652–657, Feb. 2008.
A. S. Borakhadikar, “One dimensional computer modeling of a lithium-ion battery,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:55707153.
K. A. Smith, C. D. Rahn, and C. Y. Wang, “Control oriented 1D electrochemical model of lithium ion battery,” Energy Conversion and Management, vol. 48, 2007.
Y. Bandara, “Mathematical and numerical modelling of lithium battery,” Master thesis, University of Stavanger, Norway, 2021. [Online]. Available: https://uis.brage.unit.no/uis-xmlui/handle/11250/2786806.
A. Rajan, A. McGordon, W. D. Widanage, and P. Jennings, “Modified electrochemical parameter estimation of NCR18650BD battery using implicit finite volume method,” Journal of Power Sources, vol. 342, pp. 934–947, Mar. 2017.
A. K. Alshara, “Analytical Study of Heat Transfer Enhancement Due to Internal Oscillating Flow at Constant Heat Flux,” Ph.D. dissertation, Dept. Mechanical Eng., Univ. of Technology, Baghdad, Iraq, 2006, doi: 10.13140/RG.2.2.28303.41122.
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Technical Education Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © JTE.


