A New V-Based Metal–Organic Framework Synthesized from Pyrene-Based Linker

Authors

  • Thach N. Tu Nguyen Tat Thanh University, Vietnam
  • Nhung Thi Tran Ho Chi Minh City University of Technology and Education, Vietnam

Corressponding author's email:

tnthach@ntt.edu.vn

DOI:

https://doi.org/10.54644/jte.68.2022.1081

Keywords:

Metal–Organic Framework, MOFs, Vanadium, nano-size, 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4–)

Abstract

A new vanadium based metal–organic framework (MOF), termed V-TBAPy, V2O2(C44H22O8)·9.5H2O, was designed and solvothermal synthesized. Crystal structure analysis showed that V-TBAPy is constructed from VO(CO2)2 rod-shaped SBUs (SBUs = secondary building units) and 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4–) linker to adopt the frz architecture highlighted by 1D channel of 9.3 Å and 4.0 × 9.4 Å2 in the structure. V-TBAPy was characterized by powder x-ray diffraction analysis (PXRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), elemental analysis (EA) and N2 adsorption measurements at 77 K. The resulted analyses indicated the highly thermal stability and permanent porosity of  V-TBAPy with the Brunauer–Emmett–Teller surface (BET) area derived from the adsorption data of V-TBAPy to be 1620 m2 g–1. Furthermore, the rod-shaped morphology and the nano-size V-TBAPy were also confirmed by the scanning electron microscope (SEM) analysis suggesting the promising employment of the obtained material for adsorption and catalysis.

Downloads: 0

Download data is not yet available.

Author Biographies

Thach N. Tu, Nguyen Tat Thanh University, Vietnam

Thach N. Tu received the B.Eng. degree in Chemical Engineering from Ho Chi Minh City University of Technology, Viet Nam in 2010 and the PhD. degree in Chemical Engineering Vietnam National University-Ho Chi Minh City, Viet Nam, in 2016. He is currently a lecturer at Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam.

His research interest includes the development of new Metal–organic Frameworks for proton conduction, methane adsorption and catalysis.

Nhung Thi Tran, Ho Chi Minh City University of Technology and Education, Vietnam

 

Nhung Thi Tran received the B.Eng. degree in Chemical Engineering from Ho Chi Minh City University of Technology, Viet Nam in 2010, the M.Eng. degree in Chemical Engineering from Gachon University, Korea in 2012 and the PhD. degree in Materials Science and Engineering from Nanyang Technological University, Singapore in 2017. She is currently a lecturer at Ho Chi Minh City University of Technology and Education, Vietnam.

Her research interest includes the fabrication of nanomaterials and their applications in catalysis and sensing.

References

T. N. Tu, M. V. Nguyen, H. L. Nguyen, B. Yuliarto, K. E. Cordova, and S. Demir, “Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications,” Coord. Chem. Rev., vol. 364, pp. 33–50, 2018, doi: 10.1016/j.ccr.2018.03.014. DOI: https://doi.org/10.1016/j.ccr.2018.03.014

H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks.,” Science, vol. 341, no. 6149, pp. 974–986, Aug. 2013, doi: 10.1126/science.1230444. DOI: https://doi.org/10.1126/science.1230444

V. Guillerm et al., “A supermolecular building approach for the design and construction of metal-organic frameworks.,” Chem. Soc. Rev., vol. 43, no. 16, pp. 6141–72, 2014, doi: 10.1039/c4cs00135d. DOI: https://doi.org/10.1039/C4CS00135D

J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-Y. Su, “Applications of metal-organic frameworks in heterogeneous supramolecular catalysis,” Chem. Soc. Rev., vol. 43, no. 16, pp. 6011–6061, 2014, doi: 10.1039/C4CS00094C. DOI: https://doi.org/10.1039/C4CS00094C

K. Adil et al., “Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship,” Chem. Soc. Rev., vol. 46, pp. 3402–3430, 2017, doi: 10.1039/C7CS00153C. DOI: https://doi.org/10.1039/C7CS00153C

M. V. Nguyen, T. H. N. Lo, L. C. Luu, H. T. T. Nguyen, and T. N. Tu, “Enhancing proton conductivity in a metal–organic framework at T > 80 °C by an anchoring strategy,” J. Mater. Chem. A, vol. 6, no. 4, pp. 1816–1821, 2018, doi: 10.1039/C7TA10148A. DOI: https://doi.org/10.1039/C7TA10148A

T. N. Tu, N. Q. Phan, T. T. Vu, H. L. Nguyen, K. E. Cordova, and H. Furukawa, “High Proton Conductivity at Low Relative Humidity in an Anionic Fe-based Metal-Organic Framework,” J. Mater. Chem. A, vol. 4, no. 10, pp. 3638–3641, 2016, doi: 10.1039/C5TA10467J. DOI: https://doi.org/10.1039/C5TA10467J

P. Horcajada et al., “Metal-Organic Frameworks in Biomedicine,” Chem. Rev., vol. 112, no. 2, pp. 1232–1268, 2012, doi: dx.doi.org/10.1021/cr200256v. DOI: https://doi.org/10.1021/cr200256v

A. Phan and O. Yaghi, “Metal-organic frameworks as catalysts for the conversion of methane to acetic acid,” Inorg. Chem., vol. 50, no. 16, pp. 7388–7390, 2011. DOI: https://doi.org/10.1021/ic201396m

P. Van Der Voort et al., “Vanadium metal-organic frameworks: Structures and applications,” New J. Chem., vol. 38, no. 5, pp. 1853–1867, 2014, doi: 10.1039/c3nj01130e. DOI: https://doi.org/10.1039/C3NJ01130E

A. Lieb et al., “MIL-100(V) - A mesoporous vanadium metal organic framework with accessible metal sites,” Microporous and Mesoporous Mater., vol. 157, pp. 18–23, 2012, doi: 10.1016/j.micromeso.2011.12.001. DOI: https://doi.org/10.1016/j.micromeso.2011.12.001

K. Leus et al., “The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation,” Chem. Commun., vol. 46, no. 28, pp. 5085–5087, 2010, doi: 10.1039/c0cc01506g. DOI: https://doi.org/10.1039/c0cc01506g

D. Ma et al., “A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control,” Angewandte Chemie, vol. 132, no. 10, pp. 3933–3937, 2020, doi: 10.1002/ange.201914762. DOI: https://doi.org/10.1002/ange.201914762

C. E. Wilmer et al., “Large-scale screening of hypothetical metal-organic frameworks.,” Nat. Chem., vol. 4, no. 2, pp. 83–89, Feb. 2012, doi: 10.1038/nchem.1192. DOI: https://doi.org/10.1038/nchem.1192

K. Leus et al., “Synthesis, characterization and sorption properties of NH 2-MIL-47,” Phys. Chem. Chem. Phys., vol. 14, no. 44, pp. 15562–15570, 2012, doi: 10.1039/c2cp42137b. DOI: https://doi.org/10.1039/c2cp42137b

S. Biswas, S. Couck, M. Grzywa, J. F. M. Denayer, D. Volkmer, and P. Van Der Voort, “Vanadium analogues of nonfunctionalized and amino-functionalized MOFs with MIL-101 topology - Synthesis, characterization, and gas sorption properties,” Eur. J. Inorg. Chem., no. 15, pp. 2481–2486, 2012, doi: 10.1002/ejic.201200106. DOI: https://doi.org/10.1002/ejic.201200106

P. G. Yot et al., “Large breathing of the MOF MIL-47(VIV) under mechanical pressure: A joint experimental-modelling exploration,” Chem. Sci., vol. 3, no. 4, pp. 1100–1104, 2012, doi: 10.1039/c2sc00745b. DOI: https://doi.org/10.1039/c2sc00745b

K. Barthelet, J. Marrot, G. Férey, and D. Riou, “VIII(OH)(O2C–C6H4–CO2).(HO2C–C6H4–CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: Reticular synthesis with infinite inorganic building blocks?,” Chem. Commun., vol. 4, no. 5, pp. 520–521, 2004, doi: 10.1039/b312589k. DOI: https://doi.org/10.1039/B312589K

G. Wang et al., “Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework,” Dalt. Trans., vol. 45, no. 23, pp. 9485–9491, 2016, doi: 10.1039/c6dt01355d. DOI: https://doi.org/10.1039/C6DT01355D

Y. Y. Liu et al., “Synthesis, structural characterization, and catalytic performance of a vanadium-based metal-organic framework (COMOC-3),” Eur. J. Inorg. Chem., no. 16, pp. 2819–2827, 2012, doi: 10.1002/ejic.201101099. DOI: https://doi.org/10.1002/ejic.201101099

K. Barthelet, K. Adil, F. Millange, C. Serre, D. Riou, and G. Férey, “Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(III)carboxylate: MIL-71 or V III2(OH2F2(O2C-C6H4-CO2)·H2O,” J. Mater. Chem., vol. 13, no. 9, pp. 2208–2212, 2003, doi: 10.1039/b306852h. DOI: https://doi.org/10.1039/B306852H

K. Barthelet, D. Riou, and G. F, “Vanadocarboxylate With a Magnetically Frustrated Three-Dimensional Hybrid Framework Presents a Three-Dimensional Framework Built Up From Octahedral Vanadium Trimers Joined Via the Isophthalate Anionic Linkers To Delimit Cages Where Water Molecules and Chl,” Chem. Commun., pp. 1492–1493, 2002.

K. Barthelet, D. Riou, M. Nogues, and G. Férey, “Synthesis, structure, and magnetic properties of two new vanadocarboxylates with three-dimensional hybrid frameworks,” Inorg. Chem., vol. 42, no. 5, pp. 1739–1743, 2003, doi: 10.1021/ic026175m. DOI: https://doi.org/10.1021/ic026175m

T. N. Tu et al., “A new iron-based metal-organic framework with enhancing catalysis activity for benzene hydroxylation,” RSC Adv., vol. 9, no. 29, pp. 16784–16789, 2019, doi: 10.1039/c9ra03287h. DOI: https://doi.org/10.1039/C9RA03287H

K. C. Stylianou et al., “A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core,” J. Am. Chem. Soc., vol. 132, no. 12, pp. 4119–4130, 2010, doi: 10.1021/ja906041f. DOI: https://doi.org/10.1021/ja906041f

Downloads

Published

28-02-2022

How to Cite

Tu, T. N., & Tran, N. T. . (2022). A New V-Based Metal–Organic Framework Synthesized from Pyrene-Based Linker. Journal of Technical Education Science, 17(1), 11–17. https://doi.org/10.54644/jte.68.2022.1081