An Computational Algorithm for Polynomial Multiplication
Corressponding author's email:
tapchikhgkdt@hcmute.edu.vnKeywords:
computational algorithm, polynomial multiplicationAbstract
In field K, given two polynomials: a(x) = ∑ 0≤i<n aixi; b(x) = ∑ 0≤i<n bixi and m(x) = xn – 1. This paper presents a computational algorithm for polynomial multiplication:
u(x) ≡ a(x)b(x) mod m(x) = ∑ 0≤i<n uixi.
The coefficients (ui)0≤i<n are determined based on convolution and using the Chinese remainder theorem.
Downloads: 0
References
[Bai90] D. Bailey. FFTs in external or hierarchical memory. J. Supercomp., 4:23-35, 1990.
[Cra96] R. Crandall. Topics in Advanced Scientific Computation. TELOS/ Springer-Verlag, 1996.
[CP01] R. Crandall and C. Pomerance. Primer Numbers – A Computational Perspective. Springer-Verlag, 2001.
[DPS96] C. Ding , D. Pei and A. Salomaa. Chinese Remainder Theorem. World Scientific, 1996.
Downloads
Published
How to Cite
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © JTE.


