Design and Fabrication the Nearshore Wave Energy Converter
Published online: 29/09/2025
Corressponding author's email:
binhpc@hcmute.edu.vnDOI:
https://doi.org/10.54644/jte.2025.1879Keywords:
Nearshore WEC, Hydrodynamic, Modeling, Design, Test rigAbstract
This paper presents the computational analysis, design and experimental fabrication of a nearshore wave energy conversion and absorption device (Wave Energy Converter – WEC) developed to harness and convert the mechanical energy of ocean waves into electrical power. The device is specifically designed to operate efficiently under nearshore wave conditions and may also contribute to reducing wave energy impacting coastal dikes, thereby supporting erosion mitigation efforts. Initially, the working principle and structural configuration of the WEC are thoroughly described. Based on the drive system schematic and the geometric parameters of the wave barrier, relevant hydrodynamic parameters are computed using the wave-structure interaction simulation software ANSYS AQWA. These results serve as the basis for designing the WEC's drive system. Subsequently, a prototype of the device is fabricated and installed for experimental testing in a wave tank environment. Experimental results demonstrate that the device operates stably and achieves high performance.
Downloads: 0
References
N. T. Ngo, V. N. Do, T. P. Le, and T. B. Nguyen, “Nghiên cứu xác định năng lượng sóng biển khu vực Nam Trung Bộ,” Tạp chí Khí tượng Thủy văn, no. 722, pp. 58–67, 2021, doi: 10.36335/VNJHM.2021(722).58–67.
D. N. Quynh, “Đánh giá tiềm năng năng lượng biển Việt Nam,” Báo cáo tổng kết đề tài cấp Viện Khoa học và Công nghệ Việt Nam, 2002–2003, Hà Nội, 2004.
A. F. de O. Falcão, “Wave energy utilization: A review of the technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 899–918, Apr. 2010, doi: 10.1016/j.rser.2009.11.003.
Y. Zhang, Y. Zhao, W. Sun, and J. Li, “Ocean wave energy converters: Technical principle, device realization, and performance evaluation,” Renew. Sustain. Energy Rev., vol. 141, p. 110764, May 2021, doi: 10.1016/j.rser.2021.110764.
M. M. Ahmad, A. Kumar, and M. S. Alam, “Harnessing of Wave Energy as Renewable Energy: An Overview,” Int. J. Innov. Sci. Res. Technol., vol. 4, no. 8, pp. 71–88, 2019. [Online]. Available: www.ijisrt.com
S. J. Kim, W. Koo, and M. J. Shin, “Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system,” Renew. Energy, vol. 135, pp. 1260–1269, May 2019, doi: 10.1016/j.renene.2018.09.097.
N. T. K. Loan, P. T. Long, and L. M. Tien, “TIME Domain Modeling for a Floating-point Absorber Wave Energy Converter,” The Univ. Danang – J. Sci. Technol., vol. 19, no. 5, pp. 1–5, 2021.
P. C. Binh and K. K. Ahn, “Performance optimization of dielectric electro active polymers in wave energy converter application,” Int. J. Precis. Eng. Manuf., vol. 17, no. 9, pp. 1175–1185, Sep. 2016, doi: 10.1007/s12541-016-0141-6.
T. D. Dang, C. B. Phan, and K. K. Ahn, “Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode,” Int. J. Precis. Eng. Manuf.-Green Technol., vol. 6, no. 3, pp. 477–488, Mar. 2019, doi: 10.1007/s40684-019-00065-w.
T. D. Dang, M. T. Nguyen, C. B. Phan, and K. K. Ahn, “Development of a wave energy converter with mechanical power take-off via supplementary inertia control,” Int. J. Precis. Eng. Manuf.-Green Technol., vol. 6, no. 3, pp. 497–509, Mar. 2019, doi: 10.1007/s40684-019-00098-1.
P. C. Binh et al., “Analysis, design and experiment investigation of a novel wave energy converter,” IET Gener. Transm. Distrib., vol. 10, no. 2, pp. 460–469, Feb. 2016, doi: 10.1049/iet-gtd.2015.0821.
C. B. Phan, N. P. L. Nguyen, X. T. Ho, and T. S. Do, “Design and fabrication the control mechanism to improve the wave energy converter’s efficiency,” J. Tech. Educ. Sci., vol. 19, no. 05, Oct. 2024, doi: 10.54644/jte.2024.1616.
T. Q. Truong et al., “Nonlinear dynamic model for flapping-type tidal energy harvester,” J. Mar. Sci. Technol., vol. 19, no. 4, pp. 406–414, 2014.
P. E. Sitorus et al., “Design, implementation, and power estimation of a lab-scale flapping-type turbine,” J. Mar. Sci. Technol., vol. 21, no. 1, pp. 115–128, 2016.
P. E. Sitorus et al., “Progress on development of a lab-scale flapping-type tidal energy harvesting system,” in Proc. IEEE Conf. Clean Energy Technol. (CEAT), Langkawi, Malaysia, Nov. 2013, pp. 42–47.
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Technical Education Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © JTE.


