Performance Evaluation of a PID Sliding Surface and Radial Basis Function Neural Network for Mobile Robot
Corressponding author's email:
tungpt@vlute.edu.vnDOI:
https://doi.org/10.54644/jte.2024.1505Keywords:
PID, Radial basis function neural network, Sliding mode control, Mobile robot, MATLAB/SimulinkAbstract
A proportional integral derivative sliding surface (PIDSS) and radial basis function neural network (RBF-NN) for Mobile robot are applied in this study. This robot has many advantages such as simple structure, energy saving, high moving speed, and low production costs. The sliding mode control (SMC) controller using PIDSS (PIDSS-SMC) is designed so that the robot’s actual output approaches the standard input and reduces the chattering phenomena around the sliding surface. The RBF-NN is used to approximate the nonlinear components in the Pw matrix of the PIDSS-SMC controller. The weights of this neural network are trained online using the Gradient Descent algorithm. Lyapunov theory is used to prove the stability of the system. The actual output of the xw and yw converges to the reference xd and yd with the steady-state error converges to zero, the rising time reaches 0.0832s and 0.0764s, the settling time is 0.1309s and 0.1226s, the overshoot is 0.0042% and 0.0055%, respectively, and the chattering phenomena was reduced.
Downloads: 0
References
C. Ren, C. Li, L. Hu, X. Li, and S. Ma, “Adaptive model predictive control for an omnidirectional mobile robot with friction compensation and incremental input constraints,” Trans. Inst. Meas. Control, vol. 44, no. 4, pp. 835–847, 2022, doi: 10.1177/01423312211021321. DOI: https://doi.org/10.1177/01423312211021321
Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA: IEEE, 1998, pp. 69–73, doi: 10.1109/ICEC.1998.699146. DOI: https://doi.org/10.1109/ICEC.1998.699146
Y. Liu, J. J. Zhu, R. L. Williams, and J. Wu, “Omni-directional mobile robot controller based on trajectory linearization,” Robot. Auton. Syst., vol. 56, no. 5, pp. 461–479, May 2008, doi: 10.1016/j.robot.2007.08.007. DOI: https://doi.org/10.1016/j.robot.2007.08.007
Q. Xu, J. Kan, S. Chen, and S. Yan, “Fuzzy PID Based Trajectory Tracking Control of Mobile Robot and its Simulation in Simulink,” Int. J. Control Autom., vol. 7, no. 8, pp. 233–244, Aug. 2014, doi: 10.14257/ijca.2014.7.8.20. DOI: https://doi.org/10.14257/ijca.2014.7.8.20
L. Ovalle, H. Ríos, M. Llama, V. Santibáñez, and A. Dzul, “Omnidirectional mobile robot robust tracking: Sliding-mode output-based control approaches,” Control Eng. Pract., vol. 85, no. 4, pp. 50–58, Apr. 2019, doi: 10.1016/j.conengprac.2019.01.002. DOI: https://doi.org/10.1016/j.conengprac.2019.01.002
D. T. Nguyen, C. C. Tran, and H. D. Le, “Modeling and Control of Three Wheeled Omni-Directional Mobile Robot,” in Proc.the 8th Vietnam Conference on Mechatronics, 2016, pp. 517–523.
H. D. Le, D. T. Nguyen, and C. C. Tran, “Experiment on a Omni-Directional Mobile Robot Using RBF-PD Supervisory Controller,” Measurement, Control and Automation, vol. 17, pp. 51–55, 2016.
T. T. Pham, D. V. Huong, C. N. Nguyen, and M. T. Le, “Comparison of SMC and RBF-SMC on mobile robot control system,” 16th ASIA Marit. Fish. Univ. FORUM, 2017, pp. 325–339.
W. Xiao, G. Wang, J. Tian, and L. Yuan, “A novel adaptive robust control for trajectory tracking of mobile robot with uncertainties,” J. Vib. Control, pp. 563-574, 2023, doi: 10.1177/10775463231161847. DOI: https://doi.org/10.1177/10775463231161847
G. D. S. Lima, V. R. F. Moreira, and W. M. Bessa, “Accurate trajectory tracking control with adaptive neural networks for omnidirectional mobile robot subject to unmodeled dynamics,” J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 1, pp. 1–11, 2023, doi: 10.1007/s40430-022-03969-y. DOI: https://doi.org/10.1007/s40430-022-03969-y
X. Feng and C. Wang, “Adaptive neural network tracking control of an omnidirectional mobile robot,” Proc. Inst. Mech. Eng. Part J. Syst. Control Eng., vol. 237, no. 3, pp. 375–387, 2023, doi: 10.1177/09596518221135904. DOI: https://doi.org/10.1177/09596518221135904
L. T. Hoan, T. Dong, and V. V. Thong, “Adaptive Sliding Mode Control for Three-Wheel Omnidirectional Mobile Robot,” Int. J. Eng. Trends Technol., vol. 71, no. 5, pp. 9–17, 2023, doi: 10.14445/22315381/IJETT-V71I5P202. DOI: https://doi.org/10.14445/22315381/IJETT-V71I5P202
A. Mehmood, I. U. H. Shaikh, and A. Ali, “Application of Deep Reinforcement Learning for Tracking Control of 3WD Omnidirectional Mobile Robot,” Inf. Technol. Control, vol. 50, no. 3, pp. 507–521, Sep. 2021, doi: 10.5755/j01.itc.50.3.25979. DOI: https://doi.org/10.5755/j01.itc.50.3.25979
W. Zheng and Y. Jia, “Trajectory Tracking Control for Omnidirectional Mobile Robots with Full-State Constraints,” in Proceedings of 2017 Chinese Intelligent Automation Conference, vol. 458, Z. Deng, Ed., in Lecture Notes in Electrical Engineering, vol. 458, Singapore: Springer Singapore, 2018, pp. 605–612, doi: 10.1007/978-981-10-6445-6_66. DOI: https://doi.org/10.1007/978-981-10-6445-6_66
C. G. Yun, Y. C. Sin, H. R. Ri, and K. N. Jo, “Trajectory tracking control of a three-wheeled omnidirectional mobile robot using disturbance estimation compensator by RBF neural network,” J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 8, p. 432, 2023, doi: 10.1007/s40430-023-04340-5. DOI: https://doi.org/10.1007/s40430-023-04340-5
K. Watanabe, "Control of an omnidirectional mobile robot," 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111), Adelaide, SA, Australia, 1998, pp. 51-60, doi: 10.1109/KES.1998.725827. DOI: https://doi.org/10.1109/KES.1998.725827
F. Loucif and S. Kechida, “Optimization of sliding mode control with PID surface for robot manipulator by Evolutionary Algorithms,” Open Comput. Sci., vol. 10, no. 1, pp. 396–407, 2020, doi: 10.1515/comp-2020-0144. DOI: https://doi.org/10.1515/comp-2020-0144
J. Liu, Sliding Mode Control Using MATLAB. Academic Press, 2017. DOI: https://doi.org/10.1016/B978-0-12-802575-8.00005-9
H. Li and S. Huang, “Research on the Prediction Method of Stock Price Based on RBF Neural Network Optimization Algorithm,” E3S Web Conf., vol. 235, pp. 1–5, 2021, doi: 10.1051/e3sconf/202123503088. DOI: https://doi.org/10.1051/e3sconf/202123503088
H. Wang, Y. Zhao, J. Pei, D. Zeng, and M. Liu, “Non-negative Radial Basis Function Neural Network in Polynomial Feature Space,” J. Phys. Conf. Ser., vol. 1168, no. 6, pp. 1–8, Feb. 2019, doi: 10.1088/1742-6596/1168/6/062005. DOI: https://doi.org/10.1088/1742-6596/1168/6/062005
A. Lemita, S. Boulahbel, and S. Kahla, “Gradient Descent Optimization Control of an Activated Sludge Process based on Radial Basis Function Neural Network,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 4, pp. 6080–6086, Aug. 2020, doi: 10.48084/etasr.3714. DOI: https://doi.org/10.48084/etasr.3714
A. İ. Kaya, M. İLkuçar, and A. ÇiFci, “Use of Radial Basis Function Neural Network in Estimating Wood Composite Materials According to Mechanical and Physical Properties,” Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 12, no. 1, pp. 116–123, Mar. 2019, DOI: 10.18185/erzifbed.428763. DOI: https://doi.org/10.18185/erzifbed.428763
A. Lemita, S. Boulahbel, S. Kahla, and M. Sedraoui, “Auto-Control Technique Using Gradient Method Based on Radial Basis Function Neural Networks to Control of an Activated Sludge Process of Wastewater Treatment,” J. Eur. Systèmes Autom., vol. 53, no. 5, pp. 671–679, 2020, doi: 10.18280/jesa.530510. DOI: https://doi.org/10.18280/jesa.530510
C. Tran, “Catalog of curves-part-2,” 2012, [Online]. Available: http://cohtran.blogspot.com/2012/04/catalog of curves-part-2.
I. Mukherjee and S. Routroy, “Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process,” Expert Syst. Appl., vol. 39, no. 3, pp. 2397–2407, Feb. 2012, doi: 10.1016/j.eswa.2011.08.087. DOI: https://doi.org/10.1016/j.eswa.2011.08.087
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Technical Education Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © JTE.