Classification of TV Programs According to Their Topics Using the XLNet Model
Corressponding author's email:
thuha@hcmute.edu.vnDOI:
https://doi.org/10.54644/jte.69.2022.1146Keywords:
Classification, TV channel, Artificial intelligence, XLNet, Deep learningAbstract
While observing the behavior of TV viewer, the HCMUTE researchers concluded that TV spectators rather watch the content of the TV channel than the channels themselves. The latters are just the containers / carriers of the precious TV information inside. Therefore to enable TV viewers to access directly the content, a new TV user graphic interface is offered to them: the TV program list is ordered by the topics of the broadcasted programs but not the channels carrying them. Therefore, viewers can now choose a program according to topics of interest, not via a intermediate step by selecting channel with dummy name / number. To classify all the broadcast programs, the researchers propose a sequence-to-sequence Model to organize these programs into one of five predefined topics / themes: feature films, news, music, sports and synthesis. The XLNet network is incorporated in the classification. TV channels currently playing the program with the selected theme will be displayed so that viewers can quickly access the wish content.
Downloads: 0
References
XLNet–Người khổng lồ thay thế vị trí của BERT, 06/07/2019, URL: https://trituenhantao.io/kien-thuc/xlnet-nguoi-khong-lo-thay-the-vi-tri-cua-bert/
Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le, XLNet: Generalized Autoregressive Pretraining for Language Understanding, Đại học Carnegie Mellon, Nhóm trí tuệ AI của Google.C. Waldenor, Is OTT Disrupting Television? Master Thesis, Stockholm, June 7th 2013.
Giới thiệu vể chuyên đổi câu trong xử lý ngôn ngữ tự nhiên Transformers In NLP | State-Of-The-Art-Models (analyticsvidhya.com)
Mã nguồn của mạng XLNET https://github.com/zihangdai/xlnet.J. C. Whitaker, Interactive TV Demystified, 2001 McFraw-Hill, ISBN 0-07-136325-4
A. Punchihewa, Tutorial on IPTV and its latest developments, ICIAFS January 2011. DOI: https://doi.org/10.1109/ICIAFS.2010.5715633
L. Bringuier, White Paper OTT Streaming – 2nd edition, September 2011, Anevia
T. Ohanian, Over-the-Top Considerations: Functionalities and Technologies, Cisco Systems, NAB 2014.
D. Riddlesden, A. D. Singleton, Broadband speed equity: A new digital divide, 2014, Applied Geography, Elsevier. DOI: https://doi.org/10.1016/j.apgeog.2014.04.008
Trang web chính thức của dự án OTT: https://ott.atlassian.net
Y. Cui, B. Li, K. Nahrstedt, ”Layered Peer-to-Peer Streaming”, Proc. NOSSDAV’03, Monterey, USA, pp. 162-171, Jun 2003. DOI: https://doi.org/10.1145/776322.776348
Lịch phát sóng các đài truyền hình VN: Lịch phát sóng truyền hình hàng ngày 24/7 nhanh nhất | LichPhatSongTiVi
Mô hình phân tích đoạn văn tiếng Việt: PhoBERT: The first public large-scale language models for Vietnamese – VinAI Research
Xử lý ngôn ngữ tự nhiên dùng mô hình đa ngôn ngữ: XLM-RoBERTa: The alternative for non-english NLP | by Branden Chan | deepset-ai | Medium
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Journal of Technical Education Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © JTE.