Leveraging Graph Neural Networks for Enhanced Prediction of Molecular Solubility via Transfer Learning

Dat P. Nguyen*, Phuc T. Le
Ho Chi Minh City University of Technology and Education, Vietnam

*Corresponding author. Email: datnp@hcmute.edu.vn

ARTICLE INFO

Received: 22/04/2024
Revised: 17/05/2024
Accepted: 20/05/2024
Published: 28/06/2024

KEYWORDS
Molecular property prediction;
Machine learning;
Deep learning;
Graph neural network;
Transfer learning.

ABSTRACT

In this study, we explore the potential of graph neural networks (GNNs), in combination with transfer learning, for the prediction of molecular solubility, a crucial property in drug discovery and materials science. Our approach begins with the development of a GNN-based model to predict the dipole moment of molecules. The extracted dipole moment, alongside a selected set of molecular descriptors, feeds into a subsequent predictive model for water solubility. This two-step process leverages the inherent correlations between molecular structure and its physical properties, thus enhancing the accuracy and generalizability. Our data showed that GNN models with attention mechanism and those utilize bond properties outperformed other models. Especially, 3D GNN models such as ViSNet exhibited outstanding performance, with an R² value of 0.9980. For the prediction of water solubility, the inclusion of dipole moments greatly enhanced the predictive power of various machine learning models. Our methodology demonstrates the effectiveness of GNNs in capturing complex molecular features and the power of transfer learning in bridging related predictive tasks, offering a novel approach for computational predictions in chemistry.

1. Introduction

Predicting molecular characteristics is crucial in computational chemistry, particularly in drug discovery and materials research [1]. The effectiveness and viability of molecules in various applications largely depend on properties such as solubility, lipophilicity, and reactivity [2]. Traditionally, experimental methods have been the primary means for determining these properties. However, the development of computational tools has substantially changed this process by providing faster and more affordable alternatives. Precise estimation of these properties is vital in the early stages of drug development, as it impacts the pharmacokinetics, pharmacodynamics, and overall feasibility of medicinal substances [3]. Similarly, in the field of materials research, anticipating molecular properties is essential for creating new materials with desired characteristics [4].

When computational methods were first developed, they primarily relied on quantum mechanical techniques like density functional theory (DFT), which offered detailed insights into the electronic structure of molecules. Although DFT and related methods have proved helpful in understanding the characteristics of compounds, they are frequently computationally demanding and may not always be practical for larger molecules or high-throughput screening [5]. This limitation led to the integration of machine learning (ML) algorithms in computational chemistry, striking a balance between accuracy and computational efficiency. ML models, particularly those based on molecular descriptors, have successfully predicted numerous molecular properties. However, these models often require extensive feature engineering and may not fully capture the complexity of molecular interactions [6].

Recent advancements have seen the emergence of graph neural networks (GNNs) as a powerful tool in the field of molecular property prediction (Figure 1). GNNs capture the essence of molecular structures more naturally by representing molecules as graphs [6]. This representation allows for a more
intuitive and detailed understanding of molecular interactions and properties [7]. GNNs have proven their usefulness in drug discovery and pharmaceutical analysis by accurately predicting the activity or effectiveness of medicinal compounds [8]. In addition, GNNs have shown remarkable performance in predicting the outcomes of chemical reactions, such as the Buchwald-Hartwig and Suzuki-Miyaura coupling reactions [9]. Beyond these specific applications, GNNs hold potential in areas such as organic synthesis [10], molecular docking [11], and material science [12]. Overall, the adoption of GNNs in these areas signifies a major shift towards more efficient, accurate, and predictive models in chemical research and pharmaceutical development.

Figure 1. GNN Model for Molecular Property Prediction.

The main goal of our research is to predict the solubility of molecules by first constructing a molecular dipole moment prediction model based on a GNN. Leveraging transfer learning, we then apply this trained model to predict the water solubility of molecules. By utilizing the extracted dipole moment features, along with other molecular descriptors, we aim to construct a more robust and accurate predictive model for solubility. This two-step method represents a significant departure from conventional approaches; it not only offers improved accuracy in molecular property prediction but also serves as an exemplar of transfer learning applied to computational chemistry, potentially setting a new precedent for future research in the field.

2. Computational Methods

2.1. Dataset Curation

The QM9 dataset, which was published by Ramakrishnan et al. in 2014 [13], offers a comprehensive collection of quantum mechanical properties for a wide range of small organic compounds. This dataset encompasses approximately 134,000 stable and synthetically accessible organic molecules along with their properties, computed using high-level quantum chemistry methods. The dataset was downloaded in comma-separated values (CSV) format from MoleculeNet [14]. For the construction of molecular graphs for GNN models, the ‘SMILES’ column, which contains the SMILES (Simplified Molecular Input Line-Entry System) representations of the compounds, were used. The ‘mu’ column, which contains the dipole moment of molecules (in Debye), was utilized as the target for the GNN models.

The water solubility dataset (also known as the ESOL dataset), originally published by Delaney et al. in 2004 [15], was obtained as a CSV file from MoleculeNet. This dataset is employed to predict compound solubility based on molecular structure and chemical features. The ‘SMILES’ column was utilized for feature extraction, while the ‘solubility’ column served as the target for our ML models.

2.2. GNN Models for Prediction of Dipole Moment

In constructing our GNN models, the first step involved transforming molecular structures into graph representations, utilizing RDKit and DeepChem, two prominent open-source cheminformatics and deep learning libraries. RDKit facilitates the conversion of SMILES notation into molecular structures, while DeepChem’s graph featurizer is used to extract graphical data from these structures. Subsequently, the dataset was divided into three subsets: training, validation, and testing, in a 60:20:20 ratio.

The molecular graphs generated from the training set were input into the GNN models (Figure 2). These models were developed using PyTorch-Geometric, a leading open-source library for geographical deep learning. The customized GNN models consist of 3 convolutional layers, each followed by a linear layer with a rectified linear unit (ReLU) activation function. The outputs of these GNN layers were
further passed through a multilayer perceptron (MLP) predictor that consists of 3 linear layers with ReLU activation function. During training, the models were periodically validated to monitor performance and make necessary parameter adjustments. Various types of convolution layers were employed in the GNN architecture, aiming to investigate different facets of graph-based learning and feature extraction. The GNN models were trained for 100 epochs (except 3D models, which were trained for 500 epochs) using a GeForce RTX 4090 with a specific set of training parameters for each model.

![Figure 2. Structure of GNN Model.](image)

After training, the test dataset was employed to assess the model’s predictive performance. Regression metrics, including mean absolute error (MAE), root mean square error (RMSE) and the coefficient of determination R^2, were used for this evaluation.

$$\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|, \quad \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}, \quad R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Here, \hat{y}_i represents the predicted values, y_i the observed values, n is the number of observations, and \bar{y}_i is the mean of observed values.

2.3. ML Models for Prediction of Water Solubility

In the development of our water solubility prediction model, the process began with extracting a comprehensive list of molecular features using RDKit from the SMILES representations of the molecules. These features include molecular weight, number of rings, ratio of sp³-hybridized carbon, number of hydrogen bond donors and acceptors. The extracted features were then combined with the dipole moments produced by the best-performing GNN model, creating a rich dataset for solubility prediction. Subsequently, the dataset was divided into two primary parts: training and testing, following an 80:20 ratio. In cases where model validation during training was required, a three-part split comprising training, validation, and testing was employed, following a 60:20:20 ratio.

The training set was used to train various machine learning (ML) models selected from well-established libraries such as Scikit-learn and PyTorch, each offering a range of algorithms suitable for regression tasks. Prior to training, the features were scaled using normalization to ensure that the transformed values were comparable and to prevent the dominance of features with larger scales. The training of ML models was conducted on a local computer with a selected set of parameters. Deep learning models were trained for 100 epochs using a GeForce RTX 4090.

Upon completion of the training phase, the test dataset was used for model evaluation. Similar to the GNN models, the effectiveness of each model was assessed using a range of metrics, including MAE, RMSE and R^2.
3. Results and Discussion

3.1. Evaluation of GNN Models for Prediction of Dipole Moment

In assessing the performance of our GNN models, a pivotal factor considered was the structure of the convolutional layers. Models with and without an attention mechanism, as well as those incorporate or exclude bond attributes, were examined (Table 1). The attention mechanism in GNNs is designed to selectively weigh the significance of nodes during the feature aggregation process.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Convolutional layer</th>
<th>Attention</th>
<th>Bond attributes</th>
<th>MAE</th>
<th>RMSE</th>
<th>R²</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GCNConv</td>
<td>No</td>
<td>No</td>
<td>0.6332</td>
<td>0.9156</td>
<td>0.6478</td>
<td>[16]</td>
</tr>
<tr>
<td>2</td>
<td>SAGEConv</td>
<td>No</td>
<td>No</td>
<td>0.5736</td>
<td>0.8502</td>
<td>0.6963</td>
<td>[17]</td>
</tr>
<tr>
<td>3</td>
<td>SGConv</td>
<td>No</td>
<td>No</td>
<td>0.6350</td>
<td>0.9232</td>
<td>0.6419</td>
<td>[18]</td>
</tr>
<tr>
<td>4</td>
<td>ClusterGCNConv</td>
<td>No</td>
<td>No</td>
<td>0.5764</td>
<td>0.8372</td>
<td>0.7055</td>
<td>[19]</td>
</tr>
<tr>
<td>5</td>
<td>GraphConv</td>
<td>No</td>
<td>No</td>
<td>0.5904</td>
<td>0.8648</td>
<td>0.6857</td>
<td>[20]</td>
</tr>
<tr>
<td>6</td>
<td>LEConv</td>
<td>No</td>
<td>No</td>
<td>0.5903</td>
<td>0.8571</td>
<td>0.6913</td>
<td>[21]</td>
</tr>
<tr>
<td>7</td>
<td>EGConv</td>
<td>No</td>
<td>No</td>
<td>0.5214</td>
<td>0.7913</td>
<td>0.7369</td>
<td>[22]</td>
</tr>
<tr>
<td>8</td>
<td>MFConv</td>
<td>No</td>
<td>No</td>
<td>0.5373</td>
<td>0.7987</td>
<td>0.7319</td>
<td>[23]</td>
</tr>
<tr>
<td>9</td>
<td>TAGConv</td>
<td>No</td>
<td>No</td>
<td>0.6005</td>
<td>0.8699</td>
<td>0.6820</td>
<td>[24]</td>
</tr>
<tr>
<td>10</td>
<td>ARMAConv</td>
<td>No</td>
<td>No</td>
<td>0.5179</td>
<td>0.8102</td>
<td>0.7242</td>
<td>[25]</td>
</tr>
<tr>
<td>11</td>
<td>FilMConv</td>
<td>No</td>
<td>No</td>
<td>0.5347</td>
<td>0.8159</td>
<td>0.7203</td>
<td>[26]</td>
</tr>
<tr>
<td>12</td>
<td>PDNConv</td>
<td>No</td>
<td>Yes</td>
<td>0.5536</td>
<td>0.8281</td>
<td>0.7119</td>
<td>[27]</td>
</tr>
<tr>
<td>13</td>
<td>GENConv</td>
<td>No</td>
<td>Yes</td>
<td>0.5056</td>
<td>0.7865</td>
<td>0.7400</td>
<td>[28]</td>
</tr>
<tr>
<td>14</td>
<td>ResGatedGraphConv</td>
<td>No</td>
<td>Yes</td>
<td>0.4847</td>
<td>0.7516</td>
<td>0.7626</td>
<td>[29]</td>
</tr>
<tr>
<td>15</td>
<td>GATConv</td>
<td>Yes</td>
<td>Yes</td>
<td>0.5315</td>
<td>0.7963</td>
<td>0.7336</td>
<td>[30]</td>
</tr>
<tr>
<td>16</td>
<td>GATv2Conv</td>
<td>Yes</td>
<td>Yes</td>
<td>0.5062</td>
<td>0.7695</td>
<td>0.7512</td>
<td>[31]</td>
</tr>
<tr>
<td>17</td>
<td>TransformerConv</td>
<td>Yes</td>
<td>Yes</td>
<td>0.5169</td>
<td>0.7949</td>
<td>0.7345</td>
<td>[32]</td>
</tr>
<tr>
<td>18</td>
<td>SuperGATConv</td>
<td>Yes</td>
<td>Yes</td>
<td>0.5194</td>
<td>0.7876</td>
<td>0.7393</td>
<td>[33]</td>
</tr>
<tr>
<td>19</td>
<td>GeneralConv</td>
<td>Yes</td>
<td>Yes</td>
<td>0.4803</td>
<td>0.7503</td>
<td>0.7635</td>
<td>[34]</td>
</tr>
</tbody>
</table>

Table 1. Evaluation of Convolutional Layers for Prediction of Dipole Moment.

Convolutional layers such as GCNConv, SAGEConv, and SGConv, which do not utilize attention mechanisms or bond attributes, exhibited moderate degrees of performance (Entries 1–11). Specifically, SGConv showed the highest RMSE value of 0.9232, indicating less accurate predictions (Entry 3). Conversely, EGConv demonstrated the best performance among this group, with an R² value of 0.7369 (Entry 7).

When comparing the impact of incorporating bond attributes into the model, we observed a notable improvement in predictive accuracy (Entries 12–14). Models utilizing bond attributes yielded an average R² of 0.7421, in contrast to their counterparts that ignored these attributes, which exhibited an average R² of 0.6967 (Figure 3a). This improvement underscores the significance of bond information in
capturing the nuances of molecular interactions essential for the accurate prediction of properties such as solubility. Convolutional layers like PDNConv (Entry 12) and GENConv (Entry 13) demonstrated better predictive accuracy. Notably, ResGatedGraphConv emerged as the most accurate, with the lowest MAE of 0.4847 and the highest R^2 of 0.7626 (Entry 14), indicating the benefits of including bond attributes.

![Figure 3. R^2 Values of GNN Models for Prediction of Dipole Moment.](image)

Further results indicated that models with attention mechanisms (Entries 15–19) surpassed those without, evidenced by a lower MAE of 0.51084 compared to 0.56106 and an average R^2 of 0.7444 versus 0.7056 (Figure 3b). The enhanced performance suggests that attention mechanisms enable models to focus on more relevant features for predicting the dipole moment, crucial for accurate solubility predictions. This is exemplified by the improved outcomes of GATConv and GATv2Conv, both employing attention and bond attributes, with R^2 values of 0.7336 and 0.7512, respectively (Entries 15–16). Remarkably, GeneralConv, integrating both features, achieved the best overall result with an R^2 of 0.7635 (Entry 19), highlighting the combined benefits of attention mechanisms and bond attributes.

In summary, GNN models enhanced with attention mechanisms and bond attributes consistently outshone those without. The data supports the assertion that these features are substantial contributors to model accuracy, signifying their crucial role in designing GNNs for molecular property prediction. Such advancements in model precision indicate a promising future for computational chemistry, offering scientists more reliable and sophisticated tools for their research.

We next evaluated the outputs of 3D GNN models, which consider the spatial arrangement of atoms and thus offer a more detailed depiction of molecular structures. The results demonstrated that 3D GNNs substantially outperform other GNN models in predicting the dipole moment, as shown in Figure 4. SchNet [35], with an RMSE of 0.0052 and an R^2 of 0.9899, effectively captures the electronic environments of molecules through 3D convolution. DimeNet++ [36] shows further enhancement, with an RMSE of 0.0041 and an R^2 of 0.9937. The most impressive performance is from ViSNet [37], which achieves an exceptional RMSE of 0.0023 and an R^2 of 0.9980, underscoring the benefits of leveraging 3D spatial data.

Compared to standard GNN models that overlook spatial information, the advancements with 3D GNNs are noteworthy. These models transcend the limitations of simple structural and bonding details by effectively integrating the molecular geometry and orientations, which are critical for accurately predicting inherently three-dimensional properties such as the dipole moment. These findings suggest that for challenges demanding a nuanced comprehension of molecular geometry, 3D GNNs are not only more suitable but also significantly more precise in their predictions.
3.2. Evaluation of ML Models for Prediction of Water Solubility

![Figure 5. Evaluation of ML Models for Prediction of Water Solubility.](image)

- Linear Regression: 0.6755 with dipole moment, 0.689 without dipole moment
- Ridge Regression: 0.6659 with dipole moment, 0.6816 without dipole moment
- Lasso Regression: 0.6757 with dipole moment, 0.6895 without dipole moment
- Elastic Net: 0.6755 with dipole moment, 0.6893 without dipole moment
- Gaussian Process Regression: 0.6755 with dipole moment, 0.689 without dipole moment
- KNN Regression: 0.6755 with dipole moment, 0.7512 without dipole moment
- Decision Tree Regression: 0.6755 with dipole moment, 0.7113 without dipole moment
- Random Forest Regression: 0.7502 with dipole moment, 0.7643 without dipole moment
- Support Vector Machine Regression: 0.7929 with dipole moment, 0.7986 without dipole moment
- Multilayer Perceptron: 0.7491 with dipole moment, 0.7869 without dipole moment
The evaluation of various machine learning (ML) models for water solubility prediction offers intriguing insights into the influence of molecular dipole moments on these models’ predictive capabilities. Incorporating dipole moments predicted by ViSNet into the feature set generally led to improvements in the R^2 scores for most models (Figure 5). These enhancements suggest that the dipole moment is a relevant feature for solubility prediction and that its accurate prediction by 3D GNNs like ViSNet can be effectively harnessed in other ML models.

For the linear models (linear regression, ridge regression, lasso regression, and elastic net), there was a modest increase in R^2 values upon integrating the dipole moment feature (from 0.6755 to approximately 0.689 for linear regression, with similar marginal improvements observed for the others). This suggests that while there is an improvement, the linear relationship between the dipole moment and solubility is not strongly pronounced within these models. Among the non-linear models, KNN regression showed a marked enhancement with the inclusion of the dipole moment, with its R^2 value increasing from 0.6755 to 0.7512. This indicates that the dipole moment imparts significant structural insights relevant to solubility prediction. Similarly, the R^2 for random forest regression improved from 0.7502 to 0.7643, suggesting that this ensemble method effectively utilizes the additional feature.

In contrast, decision tree regression saw a minor decline in its R^2 from 0.7113 to 0.7004, potentially indicating a propensity for overfitting when the dipole moment is added. Gaussian process regression did not exhibit a notable change with the new feature. However, the multilayer perceptron’s performance increased from 0.7491 to 0.7869, underlining the model’s adeptness at identifying complex patterns with the inclusion of features such as the dipole moment.

4. Conclusions

In conclusion, our comprehensive investigation into the predictive modeling of molecular properties has demonstrated the substantial impact of employing advanced machine learning techniques, such as GNNs and transfer learning. Utilizing ViSNet, the best-performing GNN model, we achieved remarkable accuracy in predicting dipole moments, with an R^2 value reaching up to 0.9980. This unprecedented precision in capturing the quantum mechanical properties of molecules paves the way for unbiased and accurate predictions in computational chemistry.

The application of transfer learning, utilizing the dipole moments predicted by ViSNet, further augmented our predictive models for water solubility. Although the integration of this feature yielded mixed results across various ML architectures, it was evident that non-linear models such as KNN improved significantly, with R^2 values increasing from 0.6755 to 0.7512. This enhancement in model performance underscores the potential of combining complex molecular descriptors with ML algorithms to predict solubility, a critical parameter in drug development and materials science. Our findings highlight the potential for synergy between advanced computational methods and traditional chemical descriptors in predicting molecular properties. The integration of 3D molecular geometry with machine learning offers a faster and more cost-effective alternative to traditional experimental methods.

Acknowledgments

This work belongs to the project in 2024 funded by the Ho Chi Minh City University of Technology and Education, Vietnam.

Conflict of Interest

The authors declare no conflict of interest.

REFERENCES

