Experimental Study of Lightweight Geopolymer by Synthesis of Fly Ash, Waste Powder Coating and PU Foam

Siraphong Panupongkavinphob1, Ronnachart Munsin1, Pracha Yeunyongkul1, Parkpoom Jarupoom1, Niwat Moopan1, Somkiet Wongpanich1, Ampika Rachakom2, Taweesak Sansanga3, Kriangkrai Inkham4, Pasinee Sirirapap5

1Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
2Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
3Mapp_It Co.,LTD, Chiang Mai, Thailand
4Chiang Mai Technical college, Chiang Mai, Thailand
5Faculty of Arts and Architecture, Rajamangala University of Technology Lanna, Chiang Mai, Thailand

Corresponding author. Email: p.sirirapap@rmutl.ac.th

ARTICLE INFO
Received: 22/05/2023
Revised: 19/06/2023
Accepted: 14/08/2023
Published: 28/08/2023

KEYWORDS
Lightweight geopolymer; Fly ash; Powdered coating sludge; PU foam; Compressive strength.

ABSTRACT
This research paper presents the study on the synthesis of polyurethane foam (PU foam) to produce lightweight geopolymer composite. In this study, fly ash (FA) for 70% and powdered coating sludge (PCS) for 30% used as source were activated by alkaline activator NaOH 14 M and Na2SiO3 mixture with the ratio Na2SiO3/NaOH of 2.0 and samples were cured at 80°C for 4 hours, stored at room temperature for 7, 14, and 28 days. The impact of adding PU foam particles, ranging in size from 2 to 4 mm, to FA/PCS-based geopolymers with a solid content of 0 to 50% has been studied. It was discovered that the amount of PU foam particles added caused the compressive strength and density of the lightweight geopolymer composite to decrease. Although the compressive strength was decreased when the amount of PU foam was increased but it is still be the standard of block lightweight concrete. Therefore, it is indicated that PU foam is one of the viable alternatives for reinforcement in the creation of lightweight geopolymer composites.

1. Introduction
Due to environmental pollution problems, the current climate has a higher temperature. It causes the need for more insulation materials for building houses, which makes the temperature inside the building lower. Nowadays, many types of insulating materials for wall construction in houses and buildings have been developed to meet the needs of consumers. Most insulation materials are lightweight. It consists of many tiny air bubbles that have the property of blocking heat in the bubbles and do not let the heat move to other parts, as well as the principle of sound insulation materials that rely on the principle of open pores (open cell) and absorb sound, as well as the principle of sound insulation materials that rely on the principle of open pores (open cell). The thicker the wall, the greater the sound transmission class (STC) of the system. Geopolymers can now be used as one of the greener alternative materials since the production process produces relatively few carbon dioxide emissions and environmental damage. Compared to other materials, geopolymers are synthesized from materials mainly composed of silica (SiO2) and alumina (Al2O3) and reacted with alkaline solutions and catalyzed by heat so that they harden and gain compressive strength. In Thailand, most of the lignite fly ash is used to generate electricity in the power plant in Mae Moh District, Lampang Province. Fly ash geopolymers are commonly used as a substitute for concrete blocks used for load support. Due to its relatively large weight and relatively high thermal conductivity, it is considered a limitation that will lead to the replacement of insulating materials used for walls or roofs of houses. In the past, weight and thermal insulation properties were developed by studying the mechanical properties of geopolymer materials containing waste and fly ash [1]. The study revealed that the ratio of geopolymer preparation from fly ash to powder residue was 70:30, the solid to liquid ratio (S/L) was 1.6, and the concentration of sodium hydroxide solution (NaOH) was 14 molar. The ratio of sodium silicate to sodium hydroxide (Na2SiO3/NaOH) in the second cure for 28 days
showed that the compressive strength was 186.8 kg/cm², the water absorption rate was 3.42%, the density was 1,576 kg/m³, and the thermal conductivity coefficient (k) was 0.274 W/(m-K). Moreover, the other study found that the compressive strength after adding powder coating wastes to the geopolymer material decreased when compared to fly ash, but it was still within the C16 lightweight concrete block standard. In addition, compressive strength of geopolymer foam made from fly ash and aluminum powder was studied [2]. The study revealed that the interior consists of air cavities obtained from a combination of geopolymer and foam bubbles or between the geopolymer and aluminum powder for gas formation. For the foaming method, it can be done by adding the foam before mixing it into the fresh geopolymer, as in the production of foam concrete called the “pre-formed foam method,” by using a mixer to stir well. Then insert the foam into the geopolymer. When the geopolymer hardens, it forms evenly distributed small air voids, or air pores. The walls of the pores, or air cells, are disconnected from each other. This gives geopolymer foams a lighter unit and better thermal insulation than regular geopolymers. For structural and non-load-bearing applications, there is relatively little information available on the usage of foam particles as aggregates in lightweight geopolymer concrete. The effects of various mixes of foam particles on the characteristics of lightweight geopolymer foam composite and the viability of using foam particles as reinforcement aggregates in geopolymer concrete were therefore studied for this research using fly ash, powder residue geopolymer, and foam particles. The outcome is crucial for understanding and the potential future development of this composite. Fly ash, powder residue, and foam will be used to create lightweight concrete foam composites. In samples containing different percentages of foam particles (0–50 vol%), important properties such as density and compressive strength were determined.

2. Materials and Methods

2.1. Materials

Fly ash (Fig.1(a)), industrial waste collected from the Mae Moh power plant in Lampang province, northern Thailand, powder coating sludge (Fig. 1(b)) from the Jotun Thai Co., Ltd. production line, and PU foam (Fig. 1(c)) that was left over from the installation of the building wall for heat insulation make up the raw materials used to create lightweight geopolymers in this research. The chemical composition for both materials determined using an X-ray fluorescence spectrometer by (Horiba XGT-5200) are shown in Table 1.

![Figure 1. Raw materials, (a) fly ash (FA), (b) powder coating sludge (PSC) and (c) PU foam.](image)

<table>
<thead>
<tr>
<th>Chemical/Materials</th>
<th>FA %</th>
<th>PCS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>8.29</td>
<td>3.21</td>
</tr>
<tr>
<td>SiO₂</td>
<td>16.91</td>
<td>8.32</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>23.16</td>
<td>-</td>
</tr>
<tr>
<td>SO₃</td>
<td>6.64</td>
<td>4.83</td>
</tr>
<tr>
<td>CaO</td>
<td>39.16</td>
<td>1.25</td>
</tr>
<tr>
<td>K₂O</td>
<td>5.47</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.37</td>
<td>58.25</td>
</tr>
<tr>
<td>BaO</td>
<td>0.00</td>
<td>25.14</td>
</tr>
</tbody>
</table>

Table 1. Table Chemical composition (wt%) of fly ash and powder coating sludge [6-7]
The shows FA that the content of silicon oxide (SiO$_2$) 16.91% to aluminum oxide (Al$_2$O$_3$) 8.29% ratio by mass of the source Si-to-Al should preferably be in the range is 2.04 this is a good ratio of geopolymer materials in terms of compressive strength [3]. The calcium oxide content was also very high and the iron oxide (Fe$_2$O$_3$) content was relatively high. The sum of main chemical composition SiO$_2$, Al$_2$O$_3$ and Fe$_2$O$_3$ were 48.36%, while the CaO content of FA is high at 39.16%. The high calcium content suggested that it belonged to the class C [4-5].

In the PCS there is also a titanium oxide (TiO$_2$) 58.25% and barium oxide (BaO) 25.14% were found in the largest amounts in the PCS. In the PCS also found that the composition of the element Al$_2$O$_3$ = 3.21% SiO$_2$ = 8.32% by (wt%).

In Fig. 2(a), the fly ash contains spherical forms with variously sized, relatively smooth exterior surfaces. This FA is therefore classified as a high-calcium class C fly ash. The majority of particles had interiors that were hollow and filled with smaller ones. The disclosed vitreous, unshaped, fragmented grains of PCS powder are depicted in Fig. 2(b).

![Microstructure of FA and PCS powder](image)

Figure 2. Microstructure of (a) FA and (b) PCS powder at the magnification of 5000X

Analytical grade sodium hydroxide in pellet form and sodium silicate solutions (Na$_2$O = 16.53%, SiO$_2$ 34.27%, water = 49.2%,)

2.2. Preparation

![Compressive strength tests](image)

Figure 3. The compressive strength tests
Geopolymer preparation was divided into two types of binding system which are FA - PCS - PU foam with alkaline liquid activator. The liquid alkaline activator was prepared by mixing a 14 M sodium hydroxide solution with sodium silicate solution at a weight ratio of 2:1. The activator solution was thoroughly mixed and stored at ambient conditions for at least one day prior to use. FA 70 wt.% and 30 wt.% PCS were mixed dry with 0 to 50 vol.% of PU foam. The slurry was casted in 5x5x5 cubic molds, then sealed and left at the room temperature an hour. The samples were hardened at 80 °C for four hours and cured at room temperature for 7, 14 and 28 days, respectively. The compressive strength was tested following the ASTM 109 standard as shown in Fig. 3. Moreover, the density of the geopolymer composite was determined according to Fig. 4.

Figure 4. Weigh and measure sample to determine density

3. Results and Discussion

3.1. Effect of PU foam (vol %) on compressive strength

Fig.5 showed the effect of PU foam (vol %) on compressive strength. The PU foam was varied by volume for 10, 20 and 50 %, respectively. It was found that the compressive strength was decreased when the percentage of PU foam was increased because the higher of PU foam causing expansion of the geopolymer composite and all trend of curing time was similar. The compressive strength with the PU foam 50% by vol. and curing time of 28 days was 37.2 kg/cm² and it can be seen that the compressive strength of this study was higher than the block lightweight concrete type C9-C12 about 31%. In the other hand, the compressive of this study was lower than the previous study that was synthesized by fly ash and waste powder coating [1]. Therefore, the geopolymer of this study is suitable to instead of the lightweight material and low strength.
3.2. Effect of PU foam (vol %) on density

![Figure 6. Effect of PU foam (vol %) on density](image)

When the PU foam was increased from 20 to 50% by vol., the density was suddenly decreased as shown in Fig. 6. In case the curing time of 28 days, it was found that the lowest density was about 1,257 kg/m³ with PU foam 50% by vol. It can be concluded that a longer curing time causing moisture content of the sample was reduced therefore, the weight of the sample was decreased. In addition, the increase of PU foam caused high expansion of the sample, then the weight was decreased. Moreover, it can be seen that the density in case of the curing time of 28 days and PU foam 50% was lower than the block lightweight concrete type C16 about 10.2%. However, it can be seen that the density of this study was lower than the geopolymer that was synthesized by fly ash and waste powder coating [1] about 21%. Therefore, it can be confirmed that the geopolymer which was synthesized by fly ash, waste powder coating and PU foam can be used for lightweight.

3.3. Forming of geopolymer insulator

To evaluate the possibility of commercial geopolymer production, this study tried to form the geopolymer insulator by synthesis of fly ash, waste powder coating and PU foam in 50 cm x 60 cm x 1 in as shown in Fig. 7. It was found that the geopolymer can be formed easily and it was possible produced as commercial production in future.

![Figure 7. Forming of geopolymer insulator by synthesis of fly ash, waste powder coating and PU foam](image)
4. Conclusions

This research presented the synthesis of fly ash, waste powder coating and PU foam to produce lightweight geopolymer composite. It was found that the density of this study was lower than the geopolymer that was synthesized by fly ash and waste powder coating. Therefore, it can be concluded that the geopolymer of this study is one of the alternative solutions for producing the lightweight geopolymer composites in future. Moreover, thermal conductivity coefficient (k), acoustic performance, XRD and SEM will be tested in future.

Acknowledgments

This research was supported by the project of Reinventing University 2022, Rajamangala University of Technology Lanna. The authors also express their appreciation to the Applied Thermal-Fluid Research Unit (AT-FRU) and the Recycle Materials Research Unit (RMRU), RMUTL, Thailand.

REFERENCES

Biographies

Siraphong Panpongkavinphob is a lecturer at Chiang Mai Technical College (CMTC). He is studying master’s degree in Mechanical Engineering at Rajamangala University of Technology Lanna. His research interests are geopolymer. Email: siraphong_pa64@live.rmutl.ac.th

Ronnachart Munsin works as a lecturer at Rajamangala University of Technology Lanna (RMUTL). He worked as a postdoctoral fellow at the Université d’Orléans, France in 2016. He received his D.Eng. in mechanical engineering from King Mongkut’s University of Technology Thonburi (KMUTT) in 2015, M.Eng. in mechanical engineering from Chiang Mai University in 2008 and B.Eng. in agricultural engineering from Maejo University in 2004. He was an intern at Tokyo Institute of Technology for research work in 2011. His research focus on sustainable technology, agricultural engineering and combustion. His awards and honors include the Research Fellowship from the Labex CAPRYSSES, supported by the National French Agency, the Research Fellowship from the National Research Council of Thailand, the Royal Golden Jubilee Ph.D. Program, the Fellowship from the JSAE Kanto and the DIPROM Agro-Machinery Award 2022. Email: ronnachart@rmutl.ac.th

Pracha Yeunyongkul received his D.Eng. in mechanical engineering from Chiang Mai University in 2012. He is currently an associate professor at Rajamangala University of Technology Lanna. His research interests include application of heat pipe, heat exchanger design and geopolymer. He received a lot of research grants such as the Thailand Science Research and Innovation (TSRI), TRM-RMUT Talent Resource Management and Electricity Generating Authority of Thailand (EGAT). Email: yprracha@rmutl.ac.th

Parkpoom Jarupoom received his Ph.D. in Materials Science from Chiang Mai University in 2011. He is currently an assistant professor at Rajamangala University of Technology Lanna. His research interests include ceramic materials, biomaterials nano technology and, manufacturing process. Email: noteparkpoom@rmutl.ac.th
Niwat Moonpa is an Assistant Professor, former vice president for policy and system development and Director of College of Integrated Science and Technology at the Rajamangala University of Technology Lanna. He has over 25 years of experience teaching and research in field a material testing and modeling under quasi-statics and dynamics loading, acoustic properties testing, dynamic modeling and analysis of machines, and human resource development system for industry using work-integrated learning. He was awarded the B.Eng and Ph.D. form King Mongkut’s University of Technology North Bangkok, M.Eng form Chiangmai University. His overseas research experience including doctoral research at SUMECA, France, Mechanical properties testing of viscoelastic materials at STUST, Taiwan, and Thai side director of research project on progressing work-based learning for TVET system in Thailand (ProWoThai) in collaboration with TU Dortmund by supporting funding form BMBF, Germany. Email: nmoonpa@hotmail.com

Somkiat Wongpanich is working as an instructor at Rajamangala University of Technology Lanna. He received master degree of science in technical education in Mechanical Engineering from King Mongkut's University of Technology North Bangkok. His research focus on energy management. Email: sk@rmutl.ac.th

Ampika Rachakom is a lecturer at Rajamangala University of Technology Lanna. She graduated from Chiang Mai university in B.S. Physics, M.S. Materials science and Ph.D Materials science, respectively. The grant fund of Ph.D Program Thai Doctoral degree was supported by the Commission on Higher Education under the program Strategic Scholarships for Frontier Research Network. Her research is interested in ceramics and newly materials under SDGS model. Email: ampika_aom@rmutl.ac.th

Taweesak Sansanga received his Master degree in Computer Arts from Rang sit University in 2016. He works at the Mapp_IT CO.,LTD, Chiang Mai, Thailand as designer. His research interests are model and marketing design. Email: Arttycool1990@gmail.com

Kriangkrai Inkam is a lecturer at Chiang Mai Technical College (CMTC). He received his master's degree in Mechanical Engineering from Rajamangala University of Technology Lanna in 2022 . His research interests Geopolymer material. Email: new.fullnew2527@gmail.com

Pasinee Siriprapa works as a lecturer at the Ceramic Technology Course at Rajamangala University of Technology Lanna (RMUTL). She received her doctor of philosophy in materials science from Chiang Mai University in 2015. Proficient in synthesis and property analysis, ceramic materials include electrical ceramic materials, clay ceramics, geopolymers, and porous ceramics. Email: p.siriprapa@rmutl.ac.th